A Banach Algebra Approach to Noncommutative Integration

V P Belavkin

University of Nottingham

http://www.maths.nott.ac.uk/personal/vpb/

Bangalore

August 2010.

Abstract

We review the basic concepts of stochastic integration and reformulate it in terms of a Banach four-normed *algebra with the associative product given by the stochastic covariation. We show that this nonunital algebra has two nilpotent first and second order *-ideals with the C*normed quotient algebra, being a generalization of the C*-algebra corresponding to the only nontrivial operator norm. The noncommutative generalization of this algebra called B*-algebra leads to the *-algebraic theory of quantum stochastic integration developed in [1-4]. The main notions and results of classical and quantum stochastic analysis are reformulated in this unifying approach. The general Le´vy process is defined in terms of the modular B*-Ito algebra and the corresponding quantum stochastic master equation on the predual space of a W^* -algebra is derived as a noncommutative version of the Zakai equation driven by the process. This is done by a noncommutative analog of the Girsanov transformation, which we introduce in full generality here.

Quantum adapted integrable processes

Let (\mathfrak{d}^t) be an increasing family of unital pre-C*-algebras $\mathfrak{d}^s \subseteq \mathfrak{d}^t \ \forall \mathbf{0} \leq s \leq t$ embedded into their L^1 -completions $\mathfrak{l}^s \subseteq \mathfrak{l}^t$ w.r.t. a faithful state $\mathbf{1} \in \mathfrak{l}^t$ defining the pairing

$$\langle \mathsf{dqd}^* | \mathsf{p}
angle = \langle \mathsf{dq} | \mathsf{pd}
angle = \left\langle \mathsf{q} | \mathsf{d}^\dagger \mathsf{pd}
ight
angle \ \ \forall \mathsf{d}, \mathsf{q} \in \mathfrak{d}^t, \mathsf{p} \in \mathfrak{l}^t$$

with real values $\langle qq^* | p \rangle \geq 0$ on the positive $p = d^{\dagger}d$ dominated by $\mathbf{1} = \mathbf{1}^{\dagger} \in \mathfrak{l}$ for a faithful $\langle qq^* | \mathbf{1} \rangle$. We assume that $\mathbf{1} \in \mathfrak{l}$ admits the conditional expectation $\mathsf{E}^t : \mathfrak{d} \mapsto \mathfrak{d}^t$ on $\mathfrak{d} = \cup \mathfrak{d}^t$, $\mathsf{E}^r \circ \mathsf{E}^t = \mathsf{E}^r \ \forall \ r, t \in \mathbb{R}_+$ s.t.

$$\mathsf{E}^{t}\left(1
ight)=1,\;\mathsf{E}^{t}\left(\mathsf{d}^{\dagger}\mathsf{p}\mathsf{d}
ight)=\mathsf{d}^{\dagger}\mathsf{E}^{t}\left(\mathsf{p}
ight)\mathsf{d}\;\;\;\forall\mathsf{p}\in\mathfrak{l},\mathsf{d}\in\mathfrak{l}^{t}_{\natural}.$$

Let (\mathcal{D}^t) be projective family of continuous adapted functions $q(s) \in \mathfrak{d}^s$ on [0, t[and $\mathcal{D} = \Upsilon_{t>0}\mathcal{D}^t$. An adapted process $X : t \mapsto X_t \in \mathfrak{l}^t$ is called *locally inte*grable if $X \in \mathcal{L}$, where $\mathcal{L} = \mathcal{D}^{\sharp}$ is the *dominated* (by 1(t) = 1) dual space of locally L^1 -adapted functions $p(t) \in l^t$ w.r.t. the integral pairing

$$\langle q|p
angle = \int \langle q(t) | p(t)
angle \, \mathsf{d}t \; \; \forall q \in \mathcal{D}, p \in \mathcal{L}.$$

The quantum Itô semimatingales

We consider adapted quantum Itô processes $X = (X_t)$ formally defind as the special semimartingales

$$\mathsf{X}_{t}-\mathsf{X}_{r}=\int_{r}^{t}k\left(s
ight)$$
 , $\mathsf{d}oldsymbol{B}\left(s
ight)\equiv\mathsf{\Lambda}_{r}^{t}\left(k
ight)$.

Here $k(t) = \{\mathcal{X} \ni \varkappa \mapsto k(t, \varkappa)\}$ are adapted integrands indexed by a measurable set \mathcal{X} with an isolated point $\oslash \in \mathcal{X}$ invariant under a reflection $\varkappa \mapsto -\varkappa \forall \varkappa = -(-\varkappa) \in \mathcal{X}$ and a l.c.s. $\mathcal{X}_{\circ} = \mathcal{X} \setminus \oslash$ s.t.

$$\Lambda_r^t(\boldsymbol{k}) = \int_r^t \int_{\mathcal{X}_o} k(s, \varkappa) \, \mathsf{dB}(t, \mathsf{d}\varkappa) + \int_r^t k(s, \oslash) \, \mathsf{d}s,$$

where $\mathsf{B}(t, \cdot)$ is a martingale-valued measure on \mathcal{X}_{\circ} and

$$\mathsf{E}^{r}\left[\mathsf{A}_{r}^{t}\left(\boldsymbol{k}\right)\right] = \int_{r}^{t} k\left(s,\oslash\right) \mathsf{d}s \equiv \epsilon\left[\mathsf{X}_{t}\right] - \epsilon\left[\mathsf{X}_{r}\right]$$

is given by $B(t, \oslash) = t\mathbf{1} \equiv B^+_-(t)$ as a.c. variation of

$$\epsilon \left[\mathsf{X}\right]_{t} = \mathsf{X}_{0} + \int_{0}^{t} k_{+}^{-}(s) \, \mathrm{d}s$$

for $k_{+}^{-}(t) := k(t, \emptyset) \equiv \epsilon [k(t)]$. We assume that $\mathsf{B}^{\star}(t, \mathsf{d}_{\varkappa}) := \mathsf{B}(t, -\mathsf{d}_{\varkappa})^{\dagger} = \mathsf{B}(t, \mathsf{d}_{\varkappa}) \, \forall \mathsf{d}_{\varkappa} \in \mathfrak{F}(\mathfrak{X}).$

The quantum stochastic covariation

Assuming instead of independence only commutativity

$$\mathsf{X}_t \mathsf{d}\mathsf{B}(t,\cdot) = \mathsf{d}\mathsf{B}(t,\cdot)\mathsf{X}_t \quad \forall \mathsf{X}_t \in \mathfrak{d}^t,$$

we have $\Lambda(k)^{\dagger} = \Lambda(k^{\star})$, where $k^{\star}(t, \varkappa) = k(t, \varkappa)^{\dagger}$,
and threfore $\mathsf{X}_t^{\dagger} = \mathsf{X}_0^{\dagger} + \Lambda_0^t(k^{\star}).$

Moreover, we shall assume that the *stochastic covariation*, defined if $X_t, Y_t \in \mathfrak{d}^t$ for all $t \in \mathbb{R}_+$ by

$$\left[\mathsf{X};\mathsf{Y}\right]_t := \int_0^t \left[\mathsf{d}\left(\mathsf{X}_s\mathsf{Y}_s\right) - \left(\mathsf{d}\mathsf{X}_s\right)\mathsf{Y}_s - \mathsf{X}_s\left(\mathsf{d}\mathsf{Y}_s\right)\right],$$

can be written in terms of an associative Itô product

$$(k \, \cdot \, \mathrm{d}B) \, (h \, \cdot \, \mathrm{d}B) = (k \cdot h) \, \cdot \, \mathrm{d}B$$

of noncommuting $\mathsf{d}\mathsf{X}=k\,\centerdot\,\mathsf{d}B$ and $\mathsf{d}\mathsf{Y}=h\,\centerdot\,\mathsf{d}B$ as

$$[\mathsf{X};\mathsf{Y}]_t = \int_0^t \mathsf{d}\mathsf{X}\mathsf{d}\mathsf{Y} = \int_0^t (k \cdot h) \cdot \mathsf{d}B.$$

In other words, the quantum Itô semimartingales form a nonunital \dagger -algebra w.r.t. $[\cdot; \cdot]$ given by an associative quantum Itô \star -algebra of the corresponding QS integrands k(t) as the QS derivatives $D_X(t)$ of X at t.

The generalized H-Schmidt module

A right ϑ -module \mathfrak{h} is called Hilbert-Schmidt (HS) if it is Hilbert space with respect to the scalar product

 $\langle kq|h\rangle:=\left\langle q|k^{\dagger}h\right\rangle \quad \forall k,h\in\mathfrak{h},q\in\mathfrak{d}.$

given by the left acion $h^{\circ} : \mathbf{q} \mapsto h\mathbf{q}$ of $\mathbf{h} = \mathbf{h}^{\circ}\mathbf{1} \equiv \mathbf{h}^{\circ}$ on \mathfrak{d} with the adjoint action of $\mathbf{h}^{\dagger} \equiv \mathbf{h}_{\circ}$ into \mathfrak{d}^{\natural} defining the l-valued inner product $\mathbf{h}^{\dagger}\mathbf{k} := \mathbf{h}_{\circ}\mathbf{k}^{\circ}$. For the nonunital $\mathcal{D} = \mathcal{L}_{\natural}$ the right HS module K is defined in the generalized sense as the space of left adjointable operators $k_{+} : \mathcal{L}_{\natural} \to \mathsf{K}_{\natural}$, into the Frechet space $\mathsf{K}_{\natural} = \mathsf{K}\mathcal{D}$ dense w.r.t. $||k^{\circ}d||^{2} = \langle k^{\circ}d|k^{\circ}d\rangle$ in the Hilbert space $\mathsf{H} \subseteq \mathsf{K}$. Thus, $\mathcal{K}^{\circ} \equiv \mathsf{K}$ is right and $\mathcal{K}_{\circ} \equiv \mathsf{K}^{\dagger}$ is left \mathcal{D} -module with adjoint inner products

 $(k^{\circ}|h^{\circ}) := k_{\circ}h^{\circ} \equiv (h_{\circ}|k_{\circ})^{\dagger} \in \mathcal{D}^{\natural} \forall k^{\circ} = k_{\circ}^{\dagger}, h^{\circ} = h_{\circ}^{\dagger}.$ Note that since $c^{\dagger} = c^{*}$ for any central $c \in \mathcal{C}(\mathcal{D})$, $c_{\circ}^{\circ}\mathsf{k} = \mathsf{k}c \;\forall \mathsf{k} \in \mathsf{K} \text{ and } c(t) \in \mathfrak{c}^{t} \text{ is naturally amalgmated}$ into $\mathfrak{L}(\mathfrak{h}^{t})$ for $\mathfrak{h}^{t} = \mathsf{K}(t)$. In particular, $\mathsf{K}_{\natural} = \Upsilon_{t>0}\mathsf{H}^{t}$ for $\mathsf{H}^{t} = \mathsf{H}\mathsf{1}^{t} = \mathsf{K}\mathsf{1}^{t} = \mathsf{K}^{t}$, where $\mathsf{1}^{t}(s) = \mathsf{1}$ for $s < t \text{ and } \mathsf{1}^{t}(s) = \mathsf{0}$ otherwise, and both K and $\mathfrak{L}(\mathsf{K})$ are represented by locally L^{2} and L^{∞} adapted functions $k^{\circ}(t) \in \mathfrak{h}^{t}$ and $a_{\circ}^{\circ}(t) \in \mathfrak{L}(\mathfrak{h}^{t})$.

The Itô *-algebra of an HS bi-module

Given a †-subalgebra $\mathcal{M} \subseteq \mathfrak{L}(\mathsf{K})$ of adjointable opertors on $\mathsf{K} = \mathcal{K}_+$, we extend it to a nonunital *-algebra $\mathcal{A} = \mathcal{L} \times \mathcal{K}_\circ \times \mathcal{K}^\circ \times \mathcal{M}$ of the quadruples $\boldsymbol{a} = \left(a_+^-, a_\circ^-, a_+^\circ, a_\circ^\circ\right)$ with $\boldsymbol{a}^* = \left(a_+^{-\dagger}, a_+^{\circ\dagger}, a_\circ^{-\dagger}, a_\circ^{\circ\dagger}\right)$ and Itô product

$$\boldsymbol{a} \cdot \boldsymbol{b} = \left(a_{\circ}^{-} b_{+}^{\circ}, \ a_{\circ}^{-} b_{\circ}^{\circ}, \ a_{\circ}^{\circ} b_{+}, \ a_{\circ}^{\circ} b_{\circ}^{\circ} \right).$$

It is induced by the matrix representation $a \cdot b \mapsto ab$ in the ‡-algebra $\mathfrak{L}(\mathbb{K})$ of the adjointable operators

$$\mathbf{a} = \left[egin{array}{ccc} \mathbf{0} & a_{\mathrm{o}}^{-} & a_{+}^{-} \ \mathbf{0} & a_{\mathrm{o}}^{\circ} & a_{+}^{\circ} \ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}
ight], \; \mathbf{a}^{\ddagger} = oldsymbol{I} \mathbf{a}^{\dagger} oldsymbol{I}, \; oldsymbol{I} = \left[egin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{1} \ \mathbf{0} & \mathbf{1} & \mathbf{0} \ \mathbf{1} & \mathbf{0} & \mathbf{0} \ \mathbf{1} & \mathbf{0} & \mathbf{0} \end{array}
ight]$$

on the pseudo-HS module $\mathbb{K} = \mathcal{L}_{\natural} \oplus \mathsf{K} \oplus \mathcal{L}$ of $\mathbf{k} = (q, k_{\circ}, p)^{\ddagger}$. with respect to the l-valued inner product

$$\mathbf{k}^{\dagger}\mathbf{k} := qp^{\dagger} + k_{\circ}k_{\circ}^{\dagger} + pq^{\dagger} \equiv \mathbf{k}^{\dagger}\mathbf{I}\mathbf{k}.$$

The \star -algebra $\mathfrak{A} \sim \mathcal{A}$ with $\mathcal{M} = \mathfrak{L}(\mathsf{K})$ will be called the Itô agebra of the right module \mathfrak{k} , denoted $\mathfrak{l}(\mathsf{K})$. Note that the operators **a** are continuous on each $\mathbb{K}^t = \mathbb{K}\mathbf{1}^t$ w.r.t.

 $\|\mathbf{k}\|^{+} = \|q\|, \|\mathbf{k}\|^{\circ} = \|k^{\circ}\|, \|\mathbf{k}\|^{-} = \|p\|.$

The completeness of Itô algebras

Let us fix $\mathsf{K}^t_{\natural} = \mathsf{H} = \mathsf{K}^t$ as Hilbert \mathcal{D} -module with $\|h^{\circ}\| = \sqrt{\langle 1 | h_{\circ} h^{\circ} \rangle} = \|h_{\circ}\|$. Then the algebra $\mathfrak{l}(\mathsf{H})$ is complete w.r.t. the uniform topology induced by a quadruple $(\|\cdot\|^{\mu}_{\nu})^{\mu=-,\circ}_{\nu=+,\circ}$ of the seminorms $\|a\|^{\circ}_{\circ} = \|a^{\circ}_{\circ}\|$,

$$\|\boldsymbol{a}\|_{+}^{\circ} = \|a_{+}^{\circ}\|, \|\boldsymbol{a}\|_{\circ}^{-} = \|a_{\circ}^{-}\|, \|\boldsymbol{a}\|_{+}^{-} = \|a_{+}^{-}\|.$$

Note that $(\|a\|_{
u}^{\mu}) = 0 \Leftrightarrow a = 0$ and the B^* -property

 $\|a \cdot a^{\star}\|_{+}^{-} = \|a\|_{\circ}^{-} \|a^{\star}\|_{+}^{\circ}, \|a \cdot a^{\star}\|_{\circ}^{\circ} = \|a\|_{\circ}^{\circ} \|a^{\star}\|_{\circ}^{\circ}.$ A \star -subalgebra \mathfrak{B} of $\mathfrak{l}(\mathsf{H})$ is called B^{\star} -algebra if it is complete in $\|\cdot\|_{\bullet}^{\bullet}$ and the *Itô* B^{\star} -algebra if it is an extension $\mathfrak{B} \supseteq \mathcal{L}\mathbf{e}_{-}^{+}$ of its projection $\mathcal{L} = \mathfrak{B}_{+}^{-}$ given by a unital modular subalgebra $\mathcal{G} = \mathcal{L}_{\natural} \subseteq \mathcal{D}$ represented also in \mathfrak{B} by $g_{\circ}^{\circ} \in \mathfrak{B}_{\circ}^{\circ} \subseteq \mathfrak{L}(\mathsf{H})$. Here \mathbf{e}_{-}^{+} stands for the nilpotent matrix representing $\mathbf{e}_{-}^{+} = (1, 0, 0, 0)$.

The general and abstract B*-algebras

The abstract B*-algebra \mathcal{A} is defined similarly to C*algebra as a Banach *-algebra with respect to the quadruple seminorm separating \mathcal{A} in the sense $||a||_{\nu=+,\circ}^{\mu=-,\circ} =$ $0 \Rightarrow a = 0$ and satisfying the four inequalities

 $(\|oldsymbol{a}\cdotoldsymbol{b}\|_
u^\mu\leq\|oldsymbol{a}\|_\circ^\mu\|oldsymbol{b}\|_
u^\circ)_{
u=+,\circ}^{\mu=-,\circ}$

for all $a, b \in \mathcal{A}$ with the *-property $||a^*||_{-\nu}^{\mu} = ||a||_{-\mu}^{\nu}$ and the two equalities of the B*-property for a = b. The *abstract Itô algebra* \mathcal{A} with $\mathfrak{l} = \mathfrak{d}^{\natural}$ naturally has B*-norm if $1 \in \mathfrak{d}$, defined by: (i) \exists an embedding $E(\mathfrak{l}) \subseteq \mathcal{A}$ of the projection $\mathfrak{l} = \epsilon(\mathcal{A})$ into \mathcal{A} as $\epsilon \circ E = \mathrm{id}$ s.t.

$$E\left(l^{\dagger}\right) = E\left(l\right)^{\star}, \quad E\left(l\right)\mathcal{A} = \mathbf{0} = \mathcal{A}E\left(l\right) \quad \forall l \in \mathfrak{l},$$

(ii) The triviality of the \star -ideal $\mathfrak{I} = \{ m{b} \in \mathcal{A} \}$ s.t. $orall l \in \mathfrak{l}$

$$l(b) = l(a \cdot b) = l(b \cdot c) = l(a \cdot b \cdot c) = 0 \forall a, c.$$

Theorem There exists unique, up to $\mathbf{U}^{\ddagger} = \mathbf{U}^{-1}$, isometric *-representation $\mathbf{i} = (i_{\nu}^{\mu})_{\nu=+,\circ}^{\mu=-.\circ}$ of \mathcal{A} in the operator algebra $\mathfrak{l}(\mathfrak{k})$ of a minimal HS \mathfrak{d} -module \mathfrak{k} generated by $i_{+}^{\circ}(\mathcal{A}) = i_{\circ}^{-}(\mathcal{A})^{\dagger}$ with $i_{\circ}^{\circ}(\mathcal{A}) \subseteq \mathfrak{L}(\mathfrak{k})$ and $i_{+}^{-} = \epsilon$ and $\mathbf{U} = \mathbf{I} + \mathbf{K}$ given by $\mathbf{K} \in \mathfrak{l}(\mathfrak{k} \to \mathfrak{k}')$ for the $\mathfrak{k}' \simeq \mathfrak{k}$.

The germ-algebra and its commutant

Thehe germ-algebra $\mathfrak{G} = \mathcal{G}\mathbf{I} + \mathfrak{B}$ over \mathcal{G} for the Itô \star algebra \mathfrak{B} is well-defined by the triangular \ddagger -representation $\mathbf{G} = g\mathbf{I} + \mathbf{b}$ for $g \in \mathcal{G}$ and $\mathbf{b} \in \mathfrak{B}$ in terms of (g, b)with $\boldsymbol{b} = (B, b^{\circ}_{+}, b^{-}_{\circ}, b^{-}_{+})$, where $B = b^{\circ}_{\circ} + g^{\circ}_{\circ}$, by

$$(g, \boldsymbol{b}) \cdot \left(g^{\dagger}, \boldsymbol{b}^{\star}\right) = \left(gg^{\dagger}, \boldsymbol{b} \dotplus \boldsymbol{b}^{\star}\right),$$

$$\boldsymbol{b} \dot{+} \boldsymbol{b}^{\star} = \boldsymbol{b} \cdot \boldsymbol{b}^{\star} + \left(0, b_{+}^{\circ}g^{\dagger}, gb_{+}^{\circ\dagger}, b_{+}^{-}g^{\dagger} + gb_{+}^{-\dagger}\right).$$

Let $\mathfrak{B} \subseteq \mathfrak{l}(\mathfrak{k})$ be an operator Itô algebra representing on \Bbbk the general Itô algebra \mathcal{B} with $\mathfrak{B}^-_+ \subseteq \mathfrak{d}^{\natural}$. It is called the *achieved* Itô algebra on \Bbbk if $\mathfrak{G} = \mathcal{G}\mathbf{I} + \mathfrak{B}$ is the *adjointable commutant* of another gerrm-algebra $\mathfrak{F} = \mathcal{F}\mathbf{I} + \mathfrak{A}$ over a multiplier \dagger -subalgebra $\mathcal{F} = \mathfrak{L}(\mathfrak{A}^-_+)$:

$$\mathbf{b} \in \mathfrak{B} \Leftrightarrow [\mathcal{G}\mathbf{I} + \mathbf{b}, \mathcal{F}\mathbf{I} + \mathfrak{A}] = \mathbf{0}.$$

Note that the commutant of $\mathfrak{F} = \mathcal{F}I + \mathfrak{A}$ with $\mathcal{F} = \mathfrak{L}(\mathfrak{d})$ is the germ over $\mathcal{G} = \mathfrak{L}(\mathcal{C})$ with $\mathfrak{B}^-_+ = \mathcal{C}^{\natural}$. In particular, $\mathfrak{A} = \mathfrak{l}(\mathfrak{k})$ is achieved and its germ-commutant is given by the trivial achieved Itô algebra $\mathfrak{B} = \mathcal{L}e^+_-$ with $\mathcal{L} = C^{\natural}$ embedded into $\mathfrak{L}(\mathbb{K})$ by the nilpotent matrix e^+_- representing the death element $e^+_- = (1, 0, 0, 0)$ projected onto $1 \in \mathfrak{l}$ by ϵ .

The Lévy-Itô algebra of thermal noise

If \mathbb{K} is genrated by the germ-algebra $\mathfrak{F} = \mathcal{F} \mathbf{I} + \mathfrak{A}$ on all $\mathbf{c} = (c, 0, 0)^{\ddagger}$ for $c \in \mathfrak{c}(\mathfrak{d})$, then the germ-commutant \mathfrak{G} is faithfully given on the right $\mathcal{C}\mathfrak{G} \equiv \mathbf{K}_{\flat}$ of $\mathbf{c} = \mathbf{c}^{\ddagger}$ by a \flat -algebra $\mathbf{K}_{\flat} = \mathcal{C} \times \mathcal{K}_{\flat} \times \mathcal{C}^{\natural}$ embedded into $\mathbb{k}^{\ddagger} = \mathfrak{d} \times \mathcal{K} \times \mathfrak{d}^{\natural}$. The product $\mathbf{k} \cdot \mathbf{k}^{\flat}$ and $(c, k, l)^{\flat} = (c^*, k^{\flat}, l^*)$, where $c \in \mathcal{C}$, $k \in \mathcal{K}_{\flat}$, $l \in \mathcal{C}^{\natural}$, are defied $\forall \mathbf{k} = \mathbf{c}\mathbf{G}$ by $\mathbf{k}^{\flat} = (c^*, 0, 0) \mathbf{G}^{\ddagger}$, $\mathbf{k} \cdot \mathbf{k}^{\flat} = (cc^*, 0, 0) \mathbf{G}\mathbf{G}^{\ddagger} \quad \forall \mathbf{G} \in \mathfrak{G}$, $(\mathbf{k} \cdot \mathbf{h})^{\dagger} \equiv (\mathbf{k} | \mathbf{k} \cdot \mathbf{h}) \in \mathcal{C}^{\natural} \quad \forall \mathbf{h}, \mathbf{k} \in \mathbf{K}_{\flat}$. The corresponding Itô \ddagger -algebra $\mathfrak{B} = \mathfrak{G} \ominus \mathcal{G}$, given by the pairs b = (k, l) of $\mathcal{K}_{\flat} \times \mathcal{C}^{\natural} \equiv \mathfrak{b}^{\ddagger}$ embedded into \mathbf{K}_{\flat} as $(0, \mathfrak{b})$, is called the *thermal noise Lévy-Itô algebra*.

Note that $\mathbf{K}_{\flat}(\varkappa) = \mathbb{C} \times \mathcal{K}_{\flat}(\varkappa) \times \mathbb{C}$ is right Krein algebra given on the spectrum \mathcal{X} of \mathcal{C} by a right Hilbert (Tomita) algebra $\mathcal{K}_{\flat}(\varkappa)$. However, unlike Tomita, we do not assume that the subalgebra \mathcal{K}_{\flat}^{2} is dense in \mathcal{K}_{\flat} for any $\varkappa \in \mathcal{X}$. In particular, $k \cdot h = 0 \forall k, h$ in the *Heisenberg modular algebra* \mathfrak{B} describing a quantum Wiener noise by \mathcal{K}_{\flat} . The Tomita case ($\mathcal{K}_{\flat} \ni \mathbf{1}$, say) corresponds to a quantum Poisson noise (with finite $\lambda = \langle \mathbf{1} | l \rangle$).

The Itô algebra of adapted integrands

Take $\mathcal{C} = \bigcup C^t(\mathcal{X})$ as the projective limit $\mathcal{C} = \Upsilon_{t>0} \mathcal{C}^t$ of the increasing unital quotients $C^{t} := C(\mathcal{X}^{t}) \prec C_{0}(\mathcal{X})$ on the compacts $\mathcal{X}^t = \{ \varkappa \in \mathcal{X} : \tau(\varkappa) \leq t \}$ of $\mathcal{X} = \{ \varkappa \in \mathcal{X} : \tau(\varkappa) \leq t \}$ $\cup \mathcal{X}^t$ by a conti#nuous surjection $\tau : \mathcal{X} \to \mathbb{R}_+$ w.r.t. a nonatomic measure $\langle \mathbf{1} | c \rangle = \int c(\varkappa) \, \mathrm{d}\varkappa$. It defines the dominating identity $\mathbf{1} \in \mathfrak{l}$ and $\mathcal{C}^{\natural} = \curlyvee L^{\mathbf{1}} \left(\mathcal{X}^{t} \right)$. Assume that $\mathcal{K}_{b}^{t} = \Upsilon \mathcal{K}_{b}^{t}$ given by the unital b-subalgebras $\mathcal{K}_{b}^{t} \subseteq$ $C\left(\mathcal{X}^t \to K^t_{\mathsf{b}}\right)$ of L^2 -functions $k\left(\varkappa\right) = \kappa_{\varkappa} \in K^{\tau(\varkappa)}_{\mathsf{b}}$, $k^{\flat}\left(arkappa
ight)\,=\,\kappa^{\flat}_{arkappa}$ into an increasing family $\left(K^{t}_{\flat}
ight)$ of unital right Hilbert algebras $K_{\rm b}^t \subseteq H^t$ in the sections $\mathcal{K}(\varkappa) =$ $H^{\tau(\varkappa)}$ of increasing Hilbert spaces $\mathcal{K}^t \subseteq L^2\left(\mathcal{X}^t \to K^t\right)$ for $\mathcal{K} = \Upsilon \mathcal{K}^t$. This deines the thermal Itô algebra \mathfrak{B} of adapted integrands $\mathbf{K}(t) \in \left(\mathbb{K} \times K_{\mathsf{b}}^{\dagger} \otimes K_{\mathsf{b}} \times L\right)^{\iota}$ with $L^{t} = L^{1}\left(X^{t}
ight)$ and increasing vN algebras \mathbb{K}^{t} generated on H^t by operators $\mathsf{K} : h \mapsto h \cdot \kappa \equiv h\mathsf{K}$ for all $\kappa \in \mathsf{K}_{\mathsf{b}}$, $h^t \in H^t$ if the sections $\mathcal{X}(t) = \tau^{-1}(t) \equiv X^t$ are projectively increasing, $X^s \preccurlyeq X^t \forall s \leq t$, s.t. $L^s \subseteq L^t$.

References:

1. VPB, "A new form and *-algebraic structure of quantum stochastic integrals in Fock space," in *Rendiconti del Seminario Matematico e Fisico di Milano*, LVIII, 1988, pp. 177–193.

2. VPB, "A quantum nonadapted Ito formula and stochastic analysis in Fock scale," *J of Funct Analysis*, Vol. 102, no. 2, pp. 414–447, 1991.

3. "Chaotic states and stochastic integrations in quantum systems," *Usp. Mat. Nauk*, Vol. 47, pp. 47–106, 1992, translation in: *Russian Math. Surveys*, No 1 pp. 53-116 (1992).

4. VPB, Belavkin, "Quantum Lévy-Itô Algebras and Noncommutative Stochastic Analysis," To be published in *Stochastics*, Vol. , no. , pp., 2010.